Year 2020 / Volume 112 / Number 5
Rapid reviews
COVID-19, coronavirus, SARS-CoV-2 and the small bowel

383-388

DOI: 10.17235/reed.2020.7137/2020

Klaus Mönkemüller, Lucia Fry, Steffen Rickes,

Abstract
Although SARS-CoV-2 may primarily enter the cells of the lungs, the small bowel may also be an important entry or interaction site, as the enterocytes are rich in angiotensin converting enzyme (ACE)-2 receptors. The initial gastrointestinal symptoms that appear early during the course of Covid-19 support this hypothesis. Furthermore, SARS-CoV virions are preferentially released apically and not at the basement of the airway cells. Thus, in the setting of a productive infection of conducting airway epithelia, the apically released SARS-CoV may be removed by mucociliary clearance and gain access to the GI tract via a luminal exposure. In addition, post-mortem studies of mice infected by SARS-CoV have demonstrated diffuse damage to the GI tract, with the small bowel showing signs of enterocyte desquamation, edema, small vessel dilation and lymphocyte infiltration, as well as mesenteric nodes with severe hemorrhage and necrosis. Finally, the small bowel is rich in furin, a serine protease which can separate the S-spike of the coronavirus into two “pinchers” (S1 and 2). The separation of the S-spike into S1 and S2 is essential for the attachment of the virion to both the ACE receptor and the cell membrane. In this special review, we describe the interaction of SARS-CoV-2 with the cell and enterocyte and its potential clinical implications.
Share Button
New comment
Comments

03/06/2021 17:05:53
covid -19


References
1. Decaro N, Desario C, Elia G, et al. Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy. Vet Microbiol. 2007;121(3-4):225-30. Epub 2006 Dec 17. PubMed PMID: 17215093.
2. Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. 2019;14(4):397-412. doi: 10.1080/17460441.2019.1581171. Epub 2019 Mar 8. PubMed PMID: 30849247.
3. Tsang KW, Ho PL, Ooi GC, et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348(20):1977-85. Epub 2003 Mar 31. PubMed PMID: 12671062.
4. Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967-76. Epub 2003 Apr 10. PubMed PMID: 12690091.
5. Jevšnik M, Steyer A, Pokorn M, et al. The Role of Human Coronaviruses in Children Hospitalized for Acute Bronchiolitis, Acute Gastroenteritis, and Febrile Seizures: A 2-Year Prospective Study. PLoS One. 2016;11(5):e0155555. doi: 10.1371/journal.pone.0155555. eCollection 2016. PubMed PMID: 27171141; PubMed Central PMCID: PMC4865086.
6. Chiu SS, Chan KH, Chu KW, et al. Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin Infect Dis. 2005;40(12):1721-9. Epub 2005 May 10. PubMed PMID: 15909257.
7. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273. doi: 10.1038/s41586-020-2012-7. Epub 2020 Feb 3. PubMed PMID: 32015507.
8. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Feb 28. doi: 10.1056/NEJMoa2002032. [Epub ahead of print] PubMed PMID: 32109013.
9. Song Y, Liu P, Shi XL, et al. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut. 2020 Mar 5. pii: gutjnl-2020-320891. doi: 10.1136/gutjnl-2020-320891. [Epub ahead of print] PubMed PMID: 32139552.
10. Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-389. doi: 10.1080/22221751.2020.1729071. eCollection 2020. PubMed PMID: 32065057; PubMed Central PMCID: PMC7048229.
11. Perlot T, Penninger JM. ACE2 - from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect. 2013;15(13):866-73. doi:10.1016/j.micinf.2013.08.003. PubMed PMID: 23962453.
12. Camargo SM, Singer D, Makrides V, et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology. 2009 ;136(3):872-82. doi:10.1053/j.gastro.2008.10.055. PubMed PMID: 19185582; PubMed Central PMCID: PMC7094282.
13. Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622-30. PubMed PMID: 15141376.
14. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203: 631–637.
15. Kuba, K., Imai, Y., Rao, S., et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11, 875−879
16. To KF, Lo AW. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol 2004;203:740–743.
17. Perlman, S., Netland, J., 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7 (6), 439–450.
18. Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614-21. PubMed PMID: 16282461; PubMed Central PMCID: PMC1287568.
19. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020 Mar 4.pii: eabb2762. doi: 10.1126/science.abb2762. [Epub ahead of print] PubMed PMID:
20. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):1260-1263. doi:10.1126/science.abb2507. Epub 2020 Feb 19. PubMed PMID: 32075877.
21. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Mar 4. pii: S0092-8674(20)30229-4. doi:10.1016/j.cell.2020.02.052. [Epub ahead of print] PubMed PMID: 32142651; PubMed Central PMCID: PMC7102627.
22. Gordon VM, Benz R, Fujii K, et al. Clostridium septicum alpha-toxin is proteolytically activated by furin. Infect Immun. 1997;65(10):4130-4. PubMed PMID: 9317018; PubMed Central PMCID: PMC175594.
23. Klimpel, K. R., S. S. Molloy, G. Thomas, and S. H. Leppla. 1992. Anthrax toxin protective antigen is activated by a cell-surface protease with the sequence specificity and catalytic properties of furin. Proc. Natl. Acad. Sci. USA 89:10277–10281
24. Danilczyk U, Penninger JM. Angiotensin-converting enzyme II in the heart and the kidney. Circ Res. 2006;98(4):463-71. PubMed PMID: 16514079.
25. Kleta R, Romeo E, Ristic Z, et al. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet. 2004;36(9):999-1002. PubMed PMID: 15286787.
26. Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012 ;487(7408):477-81. doi: 10.1038/nature11228. PubMed PMID:22837003.
27. Leung WK, To KF, Chan PK, et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 2003;125(4):1011-7.
28. Platt AM, Mowat AM. Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett. 2008;119(1-2):22-31. doi: 10.1016/j.imlet.2008.05.009. PubMed PMID: 18601952.
29. Mönkemüller K, Bellutti M, Fry LC, Malfertheiner P. Enteroscopy. Best Pract Res Clin Gastroenterol. 2008;22(5):789-811. doi: 10.1016/j.bpg.2008.05.005. Review. PubMed PMID: 18790433.
30. Bellutti M, Mönkemüller K, Fry LC, Dombrowski F, Malfertheiner P. Characterization of yellow plaques found in the small bowel during double-balloon enteroscopy. Endoscopy. 2007 Dec;39(12):1059-63. PubMed PMID: 18072056.
31. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-6. PubMed PMID: 16001071.
32. Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. doi: 10.1186/s13054-017-1823-x. PubMed PMID: 28877748; PubMed Central PMCID: PMC5588692.
Related articles

Letter

Tofacitinib-induced eosinophilia

DOI: 10.17235/reed.2023.9831/2023

Letter

Autoimmune hepatitis after SARS-C¬¬oV-2 vaccination

DOI: 10.17235/reed.2023.9579/2023

Letter

Lymphocytic colitis with macroscopic findings

DOI: 10.17235/reed.2023.9497/2023

Letter

Hepatosplenic T-cell lymphoma and inflammatory bowel disease

DOI: 10.17235/reed.2023.9472/2023

Letter

Perianal Paget’s disease

DOI: 10.17235/reed.2022.9304/2022

Letter

Chinese dragon sign of ulcerative colitis

DOI: 10.17235/reed.2022.9154/2022

Letter

Ulcerative colitis exacerbated by strongyloidiasis

DOI: 10.17235/reed.2022.9044/2022

Letter

Infection with SARS-CoV-2 as a potential achalasia trigger

DOI: 10.17235/reed.2022.8975/2022

Letter

Upadacitinib in refractory ulcerative colitis

DOI: 10.17235/reed.2022.8870/2022

Letter

SARS-CoV-2 vaccine, a new autoimmune hepatitis trigger?

DOI: 10.17235/reed.2022.8820/2022

Letter

Intestinal disease secondary to tocilizumab

DOI: 10.17235/reed.2022.8818/2022

Review

Clinical settings with tofacitinib in ulcerative colitis

DOI: 10.17235/reed.2022.8660/2022

Letter

NSAID-induced ischemic colitis

DOI: 10.17235/reed.2022.8605/2022

Letter

Mesalazine induced interstitial pneumonitis in the COVID era

DOI: 10.17235/reed.2022.8635/2021

Digestive Diseases Image

Portal thrombosis in a patient with SARS-CoV-2 infection

DOI: 10.17235/reed.2021.8099/2021

Digestive Diseases Image

Portal pneumatosis in a patient with severe Salmonella colitis

DOI: 10.17235/reed.2021.8090/2021

Letter

Autoimmune hepatitis triggered by COVID-19

DOI: 10.17235/reed.2021.8045/2021

Letter

Acute pancreatitis related to SARS-CoV-2 infection. Disclaimer

DOI: 10.17235/reed.2021.7853/2021

Letter

SARS-CoV-2 and acute pancreatitis: a new etiological agent?

DOI: 10.17235/reed.2020.7481/2020

Digestive Diseases Image

Phlebosclerotic colitis: an unusual cause of abdominal pain and hematochezia

DOI: 10.17235/reed.2020.7358/2020

Letter

The effect of Adacolumn® on ulcerative colitis with COVID-19

DOI: 10.17235/reed.2020.7156/2020

Letter

Sweet syndrome in severe ulcerative flare

DOI: 10.17235/reed.2020.6995/2020

Digestive Diseases Image

Immune mediated colitis caused by lung cancer treatment with atezolizumab

DOI: 10.17235/reed.2017.5060/2017

Letter to the Editor

Cytomegalovirus: associated ischemic colitis in an immunocompetent patient

DOI: 10.17235/reed.2017.4937/2017

Letter to the Editor

Ulcerative colitis with gastric and duodenal involvement

DOI: 10.17235/reed.2017.4685/2016

Editorial

Specialist care in the management of inflammatory bowel disease

DOI: 10.17235/reed.2016.4628/2016

Original

Mercaptopurine and inflammatory bowel disease: the other thiopurine

DOI: 10.17235/reed.2016.4546/2016

Letter to the Editor

Ischemic colitis in an athlete: running is not always good for you

DOI: 10.17235/reed.2016.4184/2015

Case Report

Mesalamine-induced myopericarditis - A case report

DOI: 10.17235/reed.2016.4016/2015

Digestive Diseases Image

Fatal Campylobacter jejuni ileocolitis

Case Report

Severe ischemic colitis following olanzapine use - A case report

DOI: 10.17235/reed.2016.3944/2015

Case Report

Olanzapine-induced ischemic colitis

DOI: 10.17235/reed.2015.3856/2015

Citation tools
Mönkemüller K, Fry L, Rickes S. COVID-19, coronavirus, SARS-CoV-2 and the small bowel. 7137/2020


Download to a citation manager

Download the citation for this article by clicking on one of the following citation managers:

Metrics
This article has received 3694 visits.
This article has been downloaded 1851 times.

Statistics from Dimensions


Statistics from Plum Analytics

Publication history

Received: 14/04/2020

Accepted: 26/04/2020

Online First: 28/04/2020

Published: 08/05/2020

Article revision time: 6 days

Article Online First time: 14 days

Article editing time: 24 days


Share
This article has been rated by 5 readers.
Reader rating:
Valora este artículo:




Asociación Española de Ecografía Digestiva Sociedad Española de Endoscopia Digestiva Sociedad Española de Patología Digestiva
The Spanish Journal of Gastroenterology is the official organ of the Sociedad Española de Patología Digestiva, the Sociedad Española de Endoscopia Digestiva and the Asociación Española de Ecografía Digestiva
Cookie policy Privacy Policy Legal Notice © Copyright 2023 y Creative Commons. The Spanish Journal of Gastroenterology