Year 2024 / Volume 116 / Number 11
Review
Advancements in biliopancreatic endoscopy - A comprehensive review of artificial intelligence in EUS and ERCP

613-622

DOI: 10.17235/reed.2024.10456/2024

Belén Agudo Castillo, Miguel Mascarenhas, Miguel Martins, Francisco Mendes, Daniel de la Iglesia, Antonio Miguel Martins Pinto da Costa, Carlos Esteban Fernández-Zarza, Mariano González-Haba Ruiz,

Abstract
The development and implementation of artificial intelligence (AI), particularly deep learning (DL) models, has generated significant interest across various fields of gastroenterology. While research in luminal endoscopy has seen rapid translation to clinical practice with approved AI devices, its potential extends far beyond, offering promising benefits for biliopancreatic endoscopy like optical characterization of strictures during cholangioscopy or detection and classification of pancreatic lesions during diagnostic endoscopic ultrasound (EUS). This narrative review provides an up-to-date of the latest literature and available studies in this field. Serving as a comprehensive guide to the current landscape of AI in biliopancreatic endoscopy, emphasizing technological advancements, main applications, ethical considerations, and future directions for research and clinical implementation.
Share Button
New comment
Comments
No comments for this article
References
Amisha, Malik, P., Pathania, M., & Rathaur, V. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7). https://doi.org/10.4103/jfmpc.jfmpc_440_19
Ang, T. L., Kwek, A. B. E., & Wang, L. M. (2018). Diagnostic Endoscopic Ultrasound: Technique, Current Status and Future Directions. Gut and Liver, 12(5), 483–496. https://doi.org/10.5009/gnl17348
Angsuwatcharakon, P., Kulpatcharapong, S., Moon, J. H., Ramchandani, M., Lau, J., Isayama, H., Seo, D. W., Maydeo, A., Wang, H. P., Nakai, Y., Ratanachu-ek, T., Bapaye, A., Hu, B., Devereaux, B., Ponnudurai, R., Khor, C., Kongkam, P., Pausawasdi, N., Ridtitid, W., … Rerknimitr, R. (2022). Consensus guidelines on the role of cholangioscopy to diagnose indeterminate biliary stricture. HPB, 24(1). https://doi.org/10.1016/j.hpb.2021.05.005
Aoki, T., Yamada, A., Kato, Y., Saito, H., Tsuboi, A., Nakada, A., Niikura, R., Fujishiro, M., Oka, S., Ishihara, S., Matsuda, T., Nakahori, M., Tanaka, S., Koike, K., & Tada, T. (2021). Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study. Gastrointestinal Endoscopy, 93(1), 165-173.e1. https://doi.org/10.1016/j.gie.2020.04.080
Archibugi, L., Ciarfaglia, G., Cárdenas-Jaén, K., Poropat, G., Korpela, T., Maisonneuve, P., Aparicio, J. R., Casellas, J. A., Arcidiacono, P. G., Mariani, A., Stimac, D., Hauser, G., Udd, M., Kylänpää, L., Rainio, M., Di Giulio, E., Vanella, G., Lohr, J. M., Valente, R., … de-Madaria, E. (2023). Machine learning for the prediction of post-ERCP pancreatitis risk: A proof-of-concept study. Digestive and Liver Disease, 55(3). https://doi.org/10.1016/j.dld.2022.10.005
Barkun, A. N., von Renteln, D., & Sadri, H. (2023). Cost-effectiveness of Artificial Intelligence-Aided Colonoscopy for Adenoma Detection in Colon Cancer Screening. Journal of the Canadian Association of Gastroenterology, 6(3), 97–105. https://doi.org/10.1093/jcag/gwad014
Bowlus, C. L., Olson, K. A., & Eric Gershwin, M. (2016). Evaluation of indeterminate biliary strictures. In Nature Reviews Gastroenterology and Hepatology (Vol. 13, Issue 1). https://doi.org/10.1038/nrgastro.2015.182
de Oliveira, P. V. A. G., de Moura, D. T. H., Ribeiro, I. B., Bazarbashi, A. N., Franzini, T. A. P., dos Santos, M. E. L., Bernardo, W. M., & de Moura, E. G. H. (2020). Efficacy of digital single-operator cholangioscopy in the visual interpretation of indeterminate biliary strictures: a systematic review and meta-analysis. In Surgical Endoscopy (Vol. 34, Issue 8). https://doi.org/10.1007/s00464-020-07583-8
Deprez, P. H., Garces Duran, R., Moreels, T., Furneri, G., Demma, F., Verbeke, L., Van Der Merwe, S. W., & Laleman, W. (2018). The economic impact of using single-operator cholangioscopy for the treatment of difficult bile duct stones and diagnosis of indeterminate bile duct strictures. Endoscopy, 50(2). https://doi.org/10.1055/s-0043-121268
Dhali, A., Kipkorir, V., Srichawla, B. S., Kumar, H., Rathna, R. B., Ongidi, I., Chaudhry, T., Morara, G., Nurani, K., Cheruto, D., Biswas, J., Chieng, L. R., & Dhali, G. K. (2023). Artificial intelligence assisted endoscopic ultrasound for detection of pancreatic space-occupying lesion: a systematic review and meta-analysis. International Journal of Surgery, 109(12), 4298–4308. https://doi.org/10.1097/JS9.0000000000000717
Ding, Z., Shi, H., Zhang, H., Meng, L., Fan, M., Han, C., Zhang, K., Ming, F., Xie, X., Liu, H., Liu, J., Lin, R., & Hou, X. (2019). Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology, 157(4), 1044-1054.e5. https://doi.org/10.1053/j.gastro.2019.06.025
Dumitrescu, E. A., Ungureanu, B. S., Cazacu, I. M., Florescu, L. M., Streba, L., Croitoru, V. M., Sur, D., Croitoru, A., Turcu-Stiolica, A., & Lungulescu, C. V. (2022). Diagnostic Value of Artificial Intelligence-Assisted Endoscopic Ultrasound for Pancreatic Cancer: A Systematic Review and Meta-Analysis. Diagnostics (Basel, Switzerland), 12(2). https://doi.org/10.3390/diagnostics12020309
European Study Group on Cystic Tumours of the Pancreas. (2018). European evidence-based guidelines on pancreatic cystic neoplasms. Gut, 67(5), 789–804. https://doi.org/10.1136/gutjnl-2018-316027
Facciorusso, A., Barresi, L., Cannizzaro, R., Antonini, F., Triantafyllou, K., Tziatzios, G., Muscatiello, N., Hart, P. A., & Wani, S. (2021). Diagnostic yield of endoscopic ultrasound-guided tissue acquisition in autoimmune pancreatitis: a systematic review and meta-analysis. Endoscopy International Open, 9(1), E66–E75. https://doi.org/10.1055/a-1293-7279
Fugazza, A., Gabbiadini, R., Tringali, A., De Angelis, C. G., Mosca, P., Maurano, A., Di Mitri, R., Manno, M., Mariani, A., Cereatti, F., Bertani, H., Sferrazza, S., Donato, G., Tarantino, I., Cugia, L., Aragona, G., Cantù, P., Mazzocchi, A., Canfora, M. L., … Anderloni, A. (2022). Digital single-operator cholangioscopy in diagnostic and therapeutic bilio-pancreatic diseases: A prospective, multicenter study. Digestive and Liver Disease, 54(9). https://doi.org/10.1016/j.dld.2022.04.019
Goyal, H., Mann, R., Gandhi, Z., Perisetti, A., Zhang, Z., Sharma, N., Saligram, S., Inamdar, S., & Tharian, B. (2021). Application of artificial intelligence in pancreaticobiliary diseases. Therapeutic Advances in Gastrointestinal Endoscopy, 14, 263177452199305. https://doi.org/10.1177/2631774521993059
Hijioka, S., Yamao, K., Mizuno, N., Imaoka, H., Bhatia, V., & Hara, K. (2017). Early Diagnosis of Pancreatic Cancer Using Endoscopic Ultrasound. In Innovation of Diagnosis and Treatment for Pancreatic Cancer (pp. 3–11). Springer Singapore. https://doi.org/10.1007/978-981-10-2486-3_1
Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. In Nature Reviews Cancer (Vol. 18, Issue 8). https://doi.org/10.1038/s41568-018-0016-5
Huang, L., Xu, Y., Chen, J., Liu, F., Wu, D., Zhou, W., Wu, L., Pang, T., Huang, X., Zhang, K., & Yu, H. (2023). An artificial intelligence difficulty scoring system for stone removal during ERCP: a prospective validation. Endoscopy, 55(1). https://doi.org/10.1055/a-1850-6717
Ishikawa, T., Hayakawa, M., Suzuki, H., Ohno, E., Mizutani, Y., Iida, T., Fujishiro, M., Kawashima, H., & Hotta, K. (2022). Development of a Novel Evaluation Method for Endoscopic Ultrasound-Guided Fine-Needle Biopsy in Pancreatic Diseases Using Artificial Intelligence. Diagnostics (Basel, Switzerland), 12(2). https://doi.org/10.3390/diagnostics12020434
Kahaleh, M., Gaidhane, M., Shahid, H. M., Tyberg, A., Sarkar, A., Ardengh, J. C., Kedia, P., Andalib, I., Gress, F., Sethi, A., Gan, S. I., Suresh, S., Makar, M., Bareket, R., Slivka, A., Widmer, J. L., Jamidar, P. A., Alkhiari, R., Oleas, R., … Raijman, I. (2022). Digital single-operator cholangioscopy interobserver study using a new classification: the Mendoza Classification (with video). Gastrointestinal Endoscopy, 95(2). https://doi.org/10.1016/j.gie.2021.08.015
Kim, T., Kim, J., Choi, H. S., Kim, E. S., Keum, B., Jeen, Y. T., Lee, H. S., Chun, H. J., Han, S. Y., Kim, D. U., Kwon, S., Choo, J., & Lee, J. M. (2021). Artificial intelligence-assisted analysis of endoscopic retrograde cholangiopancreatography image for identifying ampulla and difficulty of selective cannulation. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87737-3
Krishna, S. G., Rao, B. B., Ugbarugba, E., Shah, Z. K., Blaszczak, A., Hinton, A., Conwell, D. L., & Hart, P. A. (2017). Diagnostic performance of endoscopic ultrasound for detection of pancreatic malignancy following an indeterminate multidetector CT scan: a systemic review and meta-analysis. Surgical Endoscopy, 31(11), 4558–4567. https://doi.org/10.1007/s00464-017-5516-y
Kruse, C. S., Frederick, B., Jacobson, T., & Monticone, D. K. (2017). Cybersecurity in healthcare: A systematic review of modern threats and trends. Technology and Health Care, 25(1), 1–10. https://doi.org/10.3233/THC-161263
Kurita, Y., Kuwahara, T., Hara, K., Mizuno, N., Okuno, N., Matsumoto, S., Obata, M., Koda, H., Tajika, M., Shimizu, Y., Nakajima, A., Kubota, K., & Niwa, Y. (2019). Diagnostic ability of artificial intelligence using deep learning analysis of cyst fluid in differentiating malignant from benign pancreatic cystic lesions. Scientific Reports, 9(1), 6893. https://doi.org/10.1038/s41598-019-43314-3
Kuwahara, T., Hara, K., Mizuno, N., Haba, S., Okuno, N., Kuraishi, Y., Fumihara, D., Yanaidani, T., Ishikawa, S., Yasuda, T., Yamada, M., Onishi, S., Yamada, K., Tanaka, T., Tajika, M., Niwa, Y., Yamaguchi, R., & Shimizu, Y. (2023). Artificial intelligence using deep learning analysis of endoscopic ultrasonography images for the differential diagnosis of pancreatic masses. Endoscopy, 55(2), 140–149. https://doi.org/10.1055/a-1873-7920
Kuwahara, T., Hara, K., Mizuno, N., Okuno, N., Matsumoto, S., Obata, M., Kurita, Y., Koda, H., Toriyama, K., Onishi, S., Ishihara, M., Tanaka, T., Tajika, M., & Niwa, Y. (2019). Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clinical and Translational Gastroenterology, 10(5), 1–8. https://doi.org/10.14309/ctg.0000000000000045
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. In Nature (Vol. 521, Issue 7553). https://doi.org/10.1038/nature14539
Lin, R., Sheng, L., Han, C., Guo, X., Wei, R., Ling, X., & Ding, Z. (2023). Application of artificial intelligence to digital‐rapid on‐site cytopathology evaluation during endoscopic ultrasound‐guided fine needle aspiration: A proof‐of‐concept study. Journal of Gastroenterology and Hepatology, 38(6), 883–887. https://doi.org/10.1111/jgh.16073
Lou, S., Du, F., Song, W., Xia, Y., Yue, X., Yang, D., Cui, B., Liu, Y., & Han, P. (2023). Artificial intelligence for colorectal neoplasia detection during colonoscopy: a systematic review and meta-analysis of randomized clinical trials. EClinicalMedicine, 66, 102341. https://doi.org/10.1016/j.eclinm.2023.102341
Machicado, J. D., Chao, W.-L., Carlyn, D. E., Pan, T.-Y., Poland, S., Alexander, V. L., Maloof, T. G., Dubay, K., Ueltschi, O., Middendorf, D. M., Jajeh, M. O., Vishwanath, A. B., Porter, K., Hart, P. A., Papachristou, G. I., Cruz-Monserrate, Z., Conwell, D. L., & Krishna, S. G. (2021). High performance in risk stratification of intraductal papillary mucinous neoplasms by confocal laser endomicroscopy image analysis with convolutional neural networks (with video). Gastrointestinal Endoscopy, 94(1), 78-87.e2. https://doi.org/10.1016/j.gie.2020.12.054
Marya, N. B., Powers, P. D., Chari, S. T., Gleeson, F. C., Leggett, C. L., Abu Dayyeh, B. K., Chandrasekhara, V., Iyer, P. G., Majumder, S., Pearson, R. K., Petersen, B. T., Rajan, E., Sawas, T., Storm, A. C., Vege, S. S., Chen, S., Long, Z., Hough, D. M., Mara, K., & Levy, M. J. (2021). Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis. Gut, 70(7), 1335–1344. https://doi.org/10.1136/gutjnl-2020-322821
Marya, N. B., Powers, P. D., Petersen, B. T., Law, R., Storm, A., Abusaleh, R. R., Rau, P., Stead, C., Levy, M. J., Martin, J., Vargas, E. J., Abu Dayyeh, B. K., & Chandrasekhara, V. (2023). Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video). Gastrointestinal Endoscopy, 97(2). https://doi.org/10.1016/j.gie.2022.08.021
Mascarenhas, M., Afonso, J., Andrade, P., Cardoso, H., & Macedo, G. (2021). Artificial intelligence and capsule endoscopy: Unravelling the future. Annals of Gastroenterology, 34(3). https://doi.org/10.20524/aog.2021.0606
Mascarenhas, M., Afonso, J., Ribeiro, T., Andrade, P., Cardoso, H., & Macedo, G. (2023). The Promise of Artificial Intelligence in Digestive Healthcare and the Bioethics Challenges It Presents. Medicina, 59(4), 790. https://doi.org/10.3390/medicina59040790
Mascarenhas, M., Martins, M., Afonso, J., Ribeiro, T., Cardoso, P., Mendes, F., Andrade, P., Cardoso, H., Ferreira, J., & Macedo, G. (2023). The Future of Minimally Invasive Capsule Panendoscopy: Robotic Precision, Wireless Imaging and AI-Driven Insights. Cancers, 15(24), 5861. https://doi.org/10.3390/cancers15245861
Mascarenhas, M., Mendes, F., Ribeiro, T., Afonso, J., Cardoso, P., Martins, M., Cardoso, H., Andrade, P., Ferreira, J., Mascarenhas Saraiva, M., & Macedo, G. (2023). Deep Learning and Minimally Invasive Endoscopy: Automatic Classification of Pleomorphic Gastric Lesions in Capsule Endoscopy. Clinical and Translational Gastroenterology, 14(10), e00609. https://doi.org/10.14309/ctg.0000000000000609
Mascarenhas, M., Ribeiro, T., Afonso, J., Ferreira, J. P. S., Cardoso, H., Andrade, P., Parente, M. P. L., Jorge, R. N., Mascarenhas Saraiva, M., & Macedo, G. (2022). Deep learning and colon capsule endoscopy: automatic detection of blood and colonic mucosal lesions using a convolutional neural network. Endoscopy International Open, 10(2), E171–E177. https://doi.org/10.1055/a-1675-1941
Mascarenhas, M., Santos, A., & Macedo, G. (2023). “Chapter 12 - Introducing blockchain technology in data storage to foster big data and artificial intelligence applications in healthcare systems.” In Mascarenhas Miguel (Ed.), Artificial Intelligence in Capsule Endoscopy (pp. 199–216). Academic Press.
Mascarenhas Saraiva, M. J., Afonso, J., Ribeiro, T., Ferreira, J., Cardoso, H., Andrade, A. P., Parente, M., Natal, R., Mascarenhas Saraiva, M., & Macedo, G. (2021). Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open Gastroenterology, 8(1), e000753. https://doi.org/10.1136/bmjgast-2021-000753
Mauro, A., Mazza, S., Scalvini, D., Lusetti, F., Bardone, M., Quaretti, P., Cobianchi, L., & Anderloni, A. (2023). The Role of Cholangioscopy in Biliary Diseases. In Diagnostics (Vol. 13, Issue 18). https://doi.org/10.3390/diagnostics13182933
Naito, Y., Tsuneki, M., Fukushima, N., Koga, Y., Higashi, M., Notohara, K., Aishima, S., Ohike, N., Tajiri, T., Yamaguchi, H., Fukumura, Y., Kojima, M., Hirabayashi, K., Hamada, Y., Norose, T., Kai, K., Omori, Y., Sukeda, A., Noguchi, H., … Yano, H. (2021). A deep learning model to detect pancreatic ductal adenocarcinoma on endoscopic ultrasound-guided fine-needle biopsy. Scientific Reports, 11(1), 8454. https://doi.org/10.1038/s41598-021-87748-0
Nguon, L. S., Seo, K., Lim, J.-H., Song, T.-J., Cho, S.-H., Park, J.-S., & Park, S. (2021). Deep Learning-Based Differentiation between Mucinous Cystic Neoplasm and Serous Cystic Neoplasm in the Pancreas Using Endoscopic Ultrasonography. Diagnostics, 11(6), 1052. https://doi.org/10.3390/diagnostics11061052
Niikura, R., Aoki, T., Shichijo, S., Yamada, A., Kawahara, T., Kato, Y., Hirata, Y., Hayakawa, Y., Suzuki, N., Ochi, M., Hirasawa, T., Tada, T., Kawai, T., & Koike, K. (2020). Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer in patients who have undergone upper gastrointestinal endoscopy. Endoscopy, 54(8). https://doi.org/10.1055/a-1660-6500
Petrone, M. C., & Arcidiacono, P. G. (2016). New strategies for the early detection of pancreatic cancer. In Expert Review of Gastroenterology and Hepatology (Vol. 10, Issue 2). https://doi.org/10.1586/17474124.2016.1122521
Piccirelli, S., Mussetto, A., Bellumat, A., Cannizzaro, R., Pennazio, M., Pezzoli, A., Bizzotto, A., Fusetti, N., Valiante, F., Hassan, C., Pecere, S., Koulaouzidis, A., & Spada, C. (2022). New Generation Express View: An Artificial Intelligence Software Effectively Reduces Capsule Endoscopy Reading Times. Diagnostics, 12(8), 1783. https://doi.org/10.3390/diagnostics12081783
Pinto dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., Maintz, D., & Baeßler, B. (2019). Medical students’ attitude towards artificial intelligence: a multicentre survey. European Radiology, 29(4). https://doi.org/10.1007/s00330-018-5601-1
Popovic, D., Glisic, T., Milosavljevic, T., Panic, N., Marjanovic-Haljilji, M., Mijac, D., Stojkovic Lalosevic, M., Nestorov, J., Dragasevic, S., Savic, P., & Filipovic, B. (2023). The Importance of Artificial Intelligence in Upper Gastrointestinal Endoscopy. In Diagnostics (Vol. 13, Issue 18). https://doi.org/10.3390/diagnostics13182862
Price, W. N. (2018). Big data and black-box medical algorithms. Science Translational Medicine, 10(471). https://doi.org/10.1126/scitranslmed.aao5333
Repici, A., Badalamenti, M., Maselli, R., Correale, L., Radaelli, F., Rondonotti, E., Ferrara, E., Spadaccini, M., Alkandari, A., Fugazza, A., Anderloni, A., Galtieri, P. A., Pellegatta, G., Carrara, S., Di Leo, M., Craviotto, V., Lamonaca, L., Lorenzetti, R., Andrealli, A., … Hassan, C. (2020). Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology, 159(2). https://doi.org/10.1053/j.gastro.2020.04.062
Robles-Medranda, C., Baquerizo-Burgos, J., Alcivar-Vasquez, J., Kahaleh, M., Raijman, I., Kunda, R., Puga-Tejada, M., Egas-Izquierdo, M., Arevalo-Mora, M., Mendez, J. C., Tyberg, A., Sarkar, A., Shahid, H., Del Valle-Zavala, R., Rodriguez, J., Merfea, R. C., Barreto-Perez, J., Saldaña-Pazmiño, G., Calle-Loffredo, D., … Lukashok, H. P. (2022). Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: Development and multicenter validation of a convolutional neural network model. Endoscopy, 55(8). https://doi.org/10.1055/a-2034-3803
Săftoiu, A., Vilmann, P., Dietrich, C. F., Iglesias-Garcia, J., Hocke, M., Seicean, A., Ignee, A., Hassan, H., Streba, C. T., Ioncică, A. M., Gheonea, D. I., & Ciurea, T. (2015). Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos). Gastrointestinal Endoscopy, 82(1), 59–69. https://doi.org/10.1016/j.gie.2014.11.040
Săftoiu, A., Vilmann, P., Gorunescu, F., Gheonea, D. I., Gorunescu, M., Ciurea, T., Popescu, G. L., Iordache, A., Hassan, H., & Iordache, S. (2008). Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointestinal Endoscopy, 68(6), 1086–1094. https://doi.org/10.1016/j.gie.2008.04.031
Săftoiu, A., Vilmann, P., Gorunescu, F., Janssen, J., Hocke, M., Larsen, M., Iglesias-Garcia, J., Arcidiacono, P., Will, U., Giovannini, M., Dietrich, C. F., Havre, R., Gheorghe, C., McKay, C., Gheonea, D. I., Ciurea, T., & European EUS Elastography Multicentric Study Group. (2012). Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clinical Gastroenterology and Hepatology : The Official Clinical Practice Journal of the American Gastroenterological Association, 10(1), 84-90.e1. https://doi.org/10.1016/j.cgh.2011.09.014
Saraiva, M. M., Ribeiro, T., Ferreira, J. P. S., Boas, F. V., Afonso, J., Santos, A. L., Parente, M. P. L., Jorge, R. N., Pereira, P., & Macedo, G. (2022). Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study. Gastrointestinal Endoscopy, 95(2). https://doi.org/10.1016/j.gie.2021.08.027
Saraiva, M. M., Ribeiro, T., González-Haba, M., Agudo Castillo, B., Ferreira, J. P. S., Vilas Boas, F., Afonso, J., Mendes, F., Martins, M., Cardoso, P., Pereira, P., & Macedo, G. (2023). Deep Learning for Automatic Diagnosis and Morphologic Characterization of Malignant Biliary Strictures Using Digital Cholangioscopy: A Multicentric Study. Cancers, 15(19). https://doi.org/10.3390/cancers15194827
Saraiva, M. M., Spindler, L., Fathallah, N., Beaussier, H., Mamma, C., Quesnée, M., Ribeiro, T., Afonso, J., Carvalho, M., Moura, R., Andrade, P., Cardoso, H., Adam, J., Ferreira, J., Macedo, G., & de Parades, V. (2022). Artificial intelligence and high-resolution anoscopy: automatic identification of anal squamous cell carcinoma precursors using a convolutional neural network. Techniques in Coloproctology, 26(11), 893–900. https://doi.org/10.1007/s10151-022-02684-z
Sethi, A., Tyberg, A., Slivka, A., Adler, D. G., Desai, A. P., Sejpal, D. V., Pleskow, D. K., Bertani, H., Gan, S. I., Shah, R., Arnelo, U., Tarnasky, P. R., Banerjee, S., Itoi, T., Moon, J. H., Kim, D. C., Gaidhane, M., Raijman, I., Peterson, B. T., … Kahaleh, M. (2022). Digital Single-operator Cholangioscopy (DSOC) Improves Interobserver Agreement (IOA) and Accuracy for Evaluation of Indeterminate Biliary Strictures: The Monaco Classification. Journal of Clinical Gastroenterology, 56(2). https://doi.org/10.1097/MCG.0000000000001321
Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1). https://doi.org/10.3322/caac.21763
Simsek, C., & Lee, L. S. (2022). Machine learning in endoscopic ultrasonography and the pancreas: The new frontier? Artificial Intelligence in Gastroenterology, 3(2), 54–65. https://doi.org/10.35712/aig.v3.i2.54
Spadaccini, M., Hassan, C., De Marco, A., Mori, Y., Facciorusso, A., Gkolfakis, P., Tziatzios, G., Triantafyllou, K., Antonelli, G., Khalaf, K., Rizkala, T., Bretthauer, M., Vandvik, P. O., Foroutan, F., Fugazza, A., Rondonotti, E., Brown, J. G., Kamba, S., Correale, L., … Repici, A. (2023). REAL-TIME COMPUTER-AIDED DETECTION OF COLORECTAL NEOPLASIA DURING COLONOSCOPY: SYSTEMATIC REVIEW AND META-ANALYSIS. Gastrointestinal Endoscopy, 97(6). https://doi.org/10.1016/j.gie.2023.04.1180
Sugimoto, Y., Kurita, Y., Kuwahara, T., Satou, M., Meguro, K., Hosono, K., Kubota, K., Hara, K., & Nakajima, A. (2023). Diagnosing malignant distal bile duct obstruction using artificial intelligence based on clinical biomarkers. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28058-5
Suresh, H., & Guttag, J. V. (2019). A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. https://doi.org/10.1145/3465416.3483305
Tang, A., Tian, L., Gao, K., Liu, R., Hu, S., Liu, J., Xu, J., Fu, T., Zhang, Z., Wang, W., Zeng, L., Qu, W., Dai, Y., Hou, R., Tang, S., & Wang, X. (2023). Contrast-enhanced harmonic endoscopic ultrasound (CH-EUS) MASTER: A novel deep learning-based system in pancreatic mass diagnosis. Cancer Medicine, 12(7), 7962–7973. https://doi.org/10.1002/cam4.5578
Tonozuka, R., Itoi, T., Nagata, N., Kojima, H., Sofuni, A., Tsuchiya, T., Ishii, K., Tanaka, R., Nagakawa, Y., & Mukai, S. (2021). Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study. Journal of Hepato-Biliary-Pancreatic Sciences, 28(1), 95–104. https://doi.org/10.1002/jhbp.825
Udriștoiu, A. L., Cazacu, I. M., Gruionu, L. G., Gruionu, G., Iacob, A. V., Burtea, D. E., Ungureanu, B. S., Costache, M. I., Constantin, A., Popescu, C. F., Udriștoiu, Ștefan, & Săftoiu, A. (2021). Real-time computer-aided diagnosis of focal pancreatic masses from endoscopic ultrasound imaging based on a hybrid convolutional and long short-term memory neural network model. PLOS ONE, 16(6), e0251701. https://doi.org/10.1371/journal.pone.0251701
U.S. Food and Drug Administration (FDA). (2021). Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. Center for Devices and Radiological Health’s Digital Health Center of Excellence.
Vilas-Boas, F., Ribeiro, T., Afonso, J., Cardoso, H., Lopes, S., Moutinho-Ribeiro, P., Ferreira, J., Mascarenhas-Saraiva, M., & Macedo, G. (2022). Deep Learning for Automatic Differentiation of Mucinous versus Non-Mucinous Pancreatic Cystic Lesions: A Pilot Study. Diagnostics (Basel, Switzerland), 12(9). https://doi.org/10.3390/diagnostics12092041
Visaggi, P., Barberio, B., Gregori, D., Azzolina, D., Martinato, M., Hassan, C., Sharma, P., Savarino, E., & de Bortoli, N. (2022). Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases. In Alimentary Pharmacology and Therapeutics (Vol. 55, Issue 5). https://doi.org/10.1111/apt.16778
Wen, L. J., Chen, J. H., Xu, H. J., & Yu, Q. (2020). Efficacy and Safety of Digital Single-Operator Cholangioscopy in the Diagnosis of Indeterminate Biliary Strictures by Targeted Biopsies: A Systematic Review and Meta-Analysis. In Diagnostics (Vol. 10, Issue 9). https://doi.org/10.3390/diagnostics10090666
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18
Yao, L., Zhang, J., Liu, J., Zhu, L., Ding, X., Chen, D., Wu, H., Lu, Z., Zhou, W., Zhang, L., Xu, B., Hu, S., Zheng, B., Yang, Y., & Yu, H. (2021). A deep learning-based system for bile duct annotation and station recognition in linear endoscopic ultrasound. EBioMedicine, 65, 103238. https://doi.org/10.1016/j.ebiom.2021.103238
Yin, H., Yang, X., Sun, L., Pan, P., Peng, L., Li, K., Zhang, D., Cui, F., Xia, C., Huang, H., & Li, Z. (2023). The value of artificial intelligence techniques in predicting pancreatic ductal adenocarcinoma with EUS images: A meta-analysis and systematic review. Endoscopic Ultrasound, 12(1), 50. https://doi.org/10.4103/EUS-D-21-00131
Zhang, B., Zhu, F., Li, P., & Zhu, J. (2023). Artificial intelligence-assisted endoscopic ultrasound in the diagnosis of gastrointestinal stromal tumors: a meta-analysis. Surgical Endoscopy, 37(3), 1649–1657. https://doi.org/10.1007/s00464-022-09597-w
Zhang, J., Zhu, L., Yao, L., Ding, X., Chen, D., Wu, H., Lu, Z., Zhou, W., Zhang, L., An, P., Xu, B., Tan, W., Hu, S., Cheng, F., & Yu, H. (2020). Deep learning-based pancreas segmentation and station recognition system in EUS: development and validation of a useful training tool (with video). Gastrointestinal Endoscopy, 92(4), 874-885.e3. https://doi.org/10.1016/j.gie.2020.04.071
Zhang, X., Tang, D., Zhou, J. D., Ni, M., Yan, P., Zhang, Z., Yu, T., Zhan, Q., Shen, Y., Zhou, L., Zheng, R., Zou, X., Zhang, B., Li, W. J., & Wang, L. (2023). A real-time interpretable artificial intelligence model for the cholangioscopic diagnosis of malignant biliary stricture (with videos). Gastrointestinal Endoscopy, 98(2). https://doi.org/10.1016/j.gie.2023.02.026
Zhu, M., Xu, C., Yu, J., Wu, Y., Li, C., Zhang, M., Jin, Z., & Li, Z. (2013). Differentiation of Pancreatic Cancer and Chronic Pancreatitis Using Computer-Aided Diagnosis of Endoscopic Ultrasound (EUS) Images: A Diagnostic Test. PLoS ONE, 8(5), e63820. https://doi.org/10.1371/journal.pone.0063820
Related articles

Letter

Duodenal lymphangiomas: endoscopic ultrasound features

DOI: 10.17235/reed.2024.10338/2024

Digestive Diseases Image

Imaging of pancreatic desmoid fibromatosis by endoscopic ultrasound

DOI: 10.17235/reed.2023.9792/2023

Letter

Acute cholecystitis treated by direct visualization endoscopy

DOI: 10.17235/reed.2023.9432/2022

Editorial

Fewer endoscopists should perform more ERCPs

DOI: 10.17235/reed.2023.9507/2022

Digestive Diseases Image

Endosonographic and ERCP findings in COVID-19 critical illness cholangiopathy

DOI: 10.17235/reed.2022.9218/2022

Letter

Angiosarcoma of the aorta diagnosed via endoscopic ultrasound

DOI: 10.17235/reed.2022.8879/2022

Digestive Diseases Image

Pancreatic lymphoma during pregnancy

DOI: 10.17235/reed.2022.8811/2022

Digestive Diseases Image

When needles are not enough, forceps delivers!

DOI: 10.17235/reed.2022.8697/2022

Letter

ERCP and situs inversus

DOI: 10.17235/reed.2021.8374/2021

Letter

Lumen-apposing metal stent deployment failure

DOI: 10.17235/reed.2020.7060/2020

Letter

Sometimes things are what they seem

DOI: 10.17235/reed.2019.5911/2018

Digestive Diseases Image

A rare case of acute obstructive suppurative pancreatic ductitis associated with ERCP

DOI: 10.17235/reed.2018.5756/2018

Letter

A giant abdominal collection: when things are not what they seem

DOI: 10.17235/reed.2018.5642/2018

Editorial

Pancreatic stents in ERCP. Where are we?

DOI: 10.17235/reed.2018.5670/2018

Letter to the Editor

Me, the intruder: revisited and rethought

DOI: 10.17235/reed.2018.5575/2018

Letter

Obstructive jaundice secondary to a hepatic hydatid cyst

DOI: 10.17235/reed.2018.5574/2018

Letter to the Editor

Late migration of a metal stent after EUS-drainage of a pancreatic pseudocyst abscess

DOI: 10.17235/reed.2018.5411/2017

Letter to the Editor

EUS-guided ethanol ablation therapy for gastric stromal tumors

DOI: 10.17235/reed.2017.5361/2017

Editorial

Pursuing excellence in ERCP

DOI: 10.17235/reed.2018.5373/2017

Letter to the Editor

A post-endoscopic retrograde cholangiopancreatography subcapsular hepatic hematoma

DOI: 10.17235/reed.2017.5123/2017

Letter to the Editor

A rectal neuroendocrine neoplasm

DOI: 10.17235/reed.2017.4836/2017

Letter to the Editor

Accuracy of ASGE criteria for the prediction of choledocholithiasis

DOI: 10.17235/reed.2017.4511/2016

Case Report

Hepatic hematoma after ERCP: two new case reports

DOI: 10.17235/reed.2017.4237/2016

Review

Endoscopic ampullectomy: a technical review

DOI: 10.17235/reed.2016.3867/2015

Case Report

Pelvic inflammatory myofibroblastic tumor mimicking a rectal cancer

DOI: 10.17235/reed.2015.3777/2015

Digestive Diseases Image

Successive breaks in biliary stents

Citation tools
Agudo Castillo B, Mascarenhas M, Martins M, Mendes F, de la Iglesia D, Costa A, et all. Advancements in biliopancreatic endoscopy - A comprehensive review of artificial intelligence in EUS and ERCP. 10456/2024


Download to a citation manager

Download the citation for this article by clicking on one of the following citation managers:

Metrics
This article has received 201 visits.
This article has been downloaded 83 times.

Statistics from Dimensions


Statistics from Plum Analytics

Publication history

Received: 05/04/2024

Accepted: 23/05/2024

Online First: 04/06/2024

Published: 11/11/2024

Article revision time: 38 days

Article Online First time: 60 days

Article editing time: 220 days


Share
This article hasn't been rated yet.
Reader rating:
Valora este artículo:




Asociación Española de Ecografía Digestiva Sociedad Española de Endoscopia Digestiva Sociedad Española de Patología Digestiva
The Spanish Journal of Gastroenterology is the official organ of the Sociedad Española de Patología Digestiva, the Sociedad Española de Endoscopia Digestiva and the Asociación Española de Ecografía Digestiva
Cookie policy Privacy Policy Legal Notice © Copyright 2023 y Creative Commons. The Spanish Journal of Gastroenterology