References
[1] Rubin JE, Crowe SE. Celiac disease. Ann Intern Med 2020;172:ITC1–16. https://doi.org/10.7326/AITC202001070.
[2] Burgueño Gómez B, Escudero-Hernández C, Rodrigo de P, et al. Duodenal lymphogram as a complementary tool in the diagnosis of celiac disease in adults. Rev Esp Enf Dig 2020; https://doi.org/10.17235/reed.2020.6391/2019. Online ahead of print.
[3] Sadeghi A, Rad N, Ashtari S, et al. The value of a biopsy in celiac disease follow up: Assessment of the small bowel after 6 and 24 months treatment with a gluten free diet. Rev Esp Enf Dig 2020; 112:101-108. https://doi.org/10.17235/reed.2019.5947/2018.
[4] Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010;5:463–6. https://doi.org/10.1097/COH.0b013e32833ed177.
[5] Yu XB, Uhde M, Green PH, et al. Autoantibodies in the extraintestinal manifestations of celiac disease. Nutrients 2018;10. https://doi.org/10.3390/nu10081123.
[6] Choung RS, Khaleghi Rostamkolaei S, Ju JM, et al. Synthetic Neoepitopes of the Transglutaminase–Deamidated Gliadin Complex as Biomarkers for Diagnosing and Monitoring Celiac Disease. Gastroenterology 2019;156:582-591.e1. https://doi.org/10.1053/j.gastro.2018.10.025.
[7] Picascia S, Mandile R, Auricchio R, et al. Gliadin-Specific T-cells mobilized in the peripheral blood of coeliac patients by short oral gluten challenge: Clinical applications. Nutrients 2015;7:10020–31. https://doi.org/10.3390/nu7125515.
[8] Adriaanse M, Leffler DA. Serum markers in the clinical management of celiac disease. Dig Dis 2015;33:236–43. https://doi.org/10.1159/000371405.
[9] Adriaanse MPM, Tack GJ, Passos VL, et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment Pharmacol Ther 2013;37:482–90. https://doi.org/10.1111/apt.12194.
[10] Vreugdenhil AC, Wolters VM, Adriaanse MP, et al. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand J Gastroenterol 2011;46:1435–41. https://doi.org/10.3109/00365521.2011.627447.
[11] Adriaanse MPM, Leffler DA, Kelly CP, et al. Serum I-FABP Detects Gluten Responsiveness in Adult Celiac Disease Patients on a Short-Term Gluten Challenge. Am J Gastroenterol 2016;111:1014–22. https://doi.org/10.1038/ajg.2016.162.
[12] Rodríguez-Martín L, Vaquero L, Vivas S. Serum I-FABP as marker for enterocyte damage in first-degree relatives of patients with coeliac disease. Aliment Pharmacol Ther 2015;42:121–2. https://doi.org/10.1111/apt.13187.
[13] Singh A, Pramanik A, Acharya P, et al. Non-Invasive Biomarkers for Celiac Disease. J Clin Med 2019;8:885. https://doi.org/10.3390/jcm8060885.
[14] Fragkos KC, Forbes A. Citrulline as a marker of intestinal function and absorption in clinical settings: A systematic review and meta-analysis. United European Gastroenterol J 2018;6:181–91. https://doi.org/10.1177/2050640617737632.
[15] Singh A, Verma AK, Das P, et al. Non-immunological biomarkers for assessment of villous abnormalities in patients with celiac disease. J Gastroenterol Hepatol 2020;35:438–45. https://doi.org/10.1111/jgh.14852.
[16] Morón B, Verma AK, Das P, et al. CYP3A4-catalyzed simvastatin metabolism as a non-invasive marker of small intestinal health in celiac disease. Am J Gastroenterol 2013;108:1344–51. https://doi.org/10.1038/ajg.2013.151.
[17] Manti S, Cuppari C, Tardino L, et al. HMGB1 as a new biomarker of celiac disease in children: A multicenter study. Nutrition 2017;37:18–21. https://doi.org/10.1016/j.nut.2016.12.011.
[18] Palone F, Vitali R, Trovato CM, et al. Faecal high mobility group box 1 in children with celiac disease: A pilot study. Dig Liv Dis 2018;50:916–9. https://doi.org/10.1016/j.dld.2018.04.003.
[19] Rashidiani S, Jalili A, Babaei E, et al. The chemokine CCL28 is elevated in the serum of patients with celiac disease and decreased after treatment. Am J Clin Exp Immunol 2017;6:60-65.
[20] López-Casado MA, Lorite P, Palomeque T, et al. Potential role of the IL-33/ST2 axis in celiac disease. Cell Mol Immunol 2017;14:285-292.https://doi.org/10.1038/cmi.2015.85.
[21] Pallone F, Monteleone Franzè G, et al. Characterization of IL-17A–Producing Cells in Celiac Disease Mucosa. J Immunol 2010;184:2211–8. https://doi.org/10.4049/jimmunol.0901919.
[22] Yuksel M, Kaplan M, Ates I, et al. The role of soluble tumor necrosis factor like weak inducer of apoptosis and interleukin-17A in the etiopathogenesis of celiac disease. Medicine (Baltimore) 2016;95:e3937. https://doi.org/10.1097/MD.0000000000003937.
[23] Comino I, Real A, Vivas S, et al. Monitoring of gluten-free diet compliance in celiac patients by assessment of gliadin 33-mer equivalent epitopes in feces. Am J Clin Nutr 2012;95:670–7. https://doi.org/10.3945/ajcn.111.026708.
[24] Moreno ML, Cebolla A, Muñoz-Suano A, et al. Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut 2017;66:250–7. https://doi.org/10.1136/gutjnl-2015-310148.
[25] Comino I, Fernández-Bañares F, Esteve M, et al. Fecal Gluten Peptides Reveal Limitations of Serological Tests and Food Questionnaires for Monitoring Gluten-Free Diet in Celiac Disease Patients. Am J Gastroenterol 2016;111:1456–65. https://doi.org/10.1038/ajg.2016.439.