References
1. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nature Medicine. 2019;25(1). doi:10.1038/s41591-018-0316-z
2. Weusten BLAM, Bisschops R, Coron E, et al. Endoscopic management of Barrett’s esophagus: European Society of Gastrointestinal Endoscopy (ESGE) position statement. Endoscopy. 2017;49(2):191-198. doi:10.1055/s-0042-122140
3. Sharma P, Savides TJ, Canto MI, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on imaging in Barrett’s Esophagus. Gastrointestinal Endoscopy. 2012;76(2):252-254. doi:10.1016/j.gie.2012.05.007
4. Harrison M, Allen JE, Gorrepati VS, López-Jamar JME, Sharma P. Management of Barrett’s esophagus with low-grade dysplasia. Diseases of the Esophagus. 2018;31(4). doi:10.1093/dote/doy004
5. de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-Learning System Detects Neoplasia in Patients With Barrett’s Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking. Gastroenterology. 2020;158(4):915-929.e4. doi:10.1053/j.gastro.2019.11.030
6. Swager AF, van der Sommen F, Klomp SR, et al. Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy. Gastrointestinal Endoscopy. 2017;86(5):839-846. doi:10.1016/j.gie.2017.03.011
7. Van Der Sommen F, Zinger S, Curvers WL, et al. Computer-aided detection of early neoplastic lesions in Barrett’s esophagus. Endoscopy. 2016;48(7):617-624. doi:10.1055/s-0042-105284
8. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6). doi:10.3322/caac.21492
9. East JE, Vleugels JL, Roelandt P, et al. Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review. Endoscopy. 2016;48(11):1029-1045. doi:10.1055/s-0042-118087
10. Wu L, He X, Liu M, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: A randomized controlled trial. Endoscopy. Published online 2021. doi:10.1055/a-1350-5583
11. Ikenoyama Y, Hirasawa T, Ishioka M, et al. Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists. Digestive Endoscopy. 2021;33(1):141-150. doi:10.1111/den.13688
12. Li L, Chen Y, Shen Z, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer. 2020;23(1):126-132. doi:10.1007/s10120-019-00992-2
13. Hu H, Gong L, Dong D, et al. Identifying early gastric cancer under magnifying narrow-band images with deep learning: a multicenter study. Gastrointestinal Endoscopy. 2021;93(6):1333-1341.e3. doi:10.1016/j.gie.2020.11.014
14. Yoon HJ, Kim S, Kim JH, et al. A Lesion-Based Convolutional Neural Network Improves Endoscopic Detection and Depth Prediction of Early Gastric Cancer. Journal of Clinical Medicine. 2019;8(9):1310. doi:10.3390/jcm8091310
15. Zhu Y, Wang QC, Xu MD, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointestinal Endoscopy. 2019;89(4):806-815.e1. doi:10.1016/j.gie.2018.11.011
16. Nakashima H, Kawahira H, Kawachi H, Sakaki N. Endoscopic three-categorical diagnosis of Helicobacter pylori infection using linked color imaging and deep learning: a single-center prospective study (with video). Gastric Cancer. 2020;23(6). doi:10.1007/s10120-020-01077-1
17. Zheng W, Zhang X, Kim JJ, et al. High Accuracy of Convolutional Neural Network for Evaluation of Helicobacter pylori Infection Based on Endoscopic Images: Preliminary Experience. Clinical and translational gastroenterology. 2019;10(12):e00109. doi:10.14309/ctg.0000000000000109
18. Itoh T, Kawahira H, Nakashima H, Yata N. Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images. Endoscopy International Open. 2018;06(02):E139-E144. doi:10.1055/s-0043-120830
19. Yang X, Wang H, Dong Q, et al. An Artificial Intelligence System for Distinguishing Between Gastrointestinal Stromal Tumors and Leiomyomas Using Endoscopic Ultrasonography (with video). Endoscopy. 2021;(16). doi:10.1055/a-1476-8931
20. Dimas G, Spyrou E, Iakovidis DK, Koulaouzidis A. Intelligent visual localization of wireless capsule endoscopes enhanced by color information. Computers in Biology and Medicine. 2017;89(August):429-440. doi:10.1016/j.compbiomed.2017.08.029
21. Sana MK, Hussain ZM, Maqsood MH, Shah PA. Artificial intelligence in celiac disease. Computers in Biology and Medicine. 2020;125(August):103996. doi:10.1016/j.compbiomed.2020.103996
22. Mosli MH, Feagan BG, Sandborn WJ, et al. Histologic evaluation of ulcerative colitis: A systematic review of disease activity indices. Inflammatory Bowel Diseases. 2014;20(3):564-575. doi:10.1097/01.MIB.0000437986.00190.71
23. Gubatan J, Levitte S, Patel A, Balabanis T, Wei MT, Sinha SR. Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions. World Journal of Gastroenterology. 2021;27(17):1920-1935. doi:10.3748/wjg.v27.i17.1920
24. Stidham RW, Liu W, Bishu S, et al. Performance of a deep learning model vs human reviewers in grading endoscopic disease severity of patients with ulcerative colitis. JAMA Network Open. 2019;2(5):1-10. doi:10.1001/jamanetworkopen.2019.3963
25. Bhambhvani HP, Zamora A. Deep learning enabled classification of Mayo endoscopic subscore in patients with ulcerative colitis. European Journal of Gastroenterology and Hepatology. Published online 2021:645-649. doi:10.1097/MEG.0000000000001952
26. Rutter MD, Beintaris I, Valori R, et al. World Endoscopy Organization Consensus Statements on Post-Colonoscopy and Post-Imaging Colorectal Cancer. Gastroenterology. 2018;155(3):909-925.e3. doi:10.1053/j.gastro.2018.05.038
27. el Dallal M, Chen Y, Lin Q, et al. Meta-Analysis of virtual-based chromoendoscopy compared with dye-spraying chromoendoscopy standard and high-definition white light endoscopy in patients with inflammatory bowel disease at increased risk of colon cancer. Inflammatory Bowel Diseases. 2020;26(9):1319-1329. doi:10.1093/ibd/izaa011
28. Hassan C, Spadaccini M, Iannone A, et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointestinal Endoscopy. 2021;93(1):77-85.e6. doi:10.1016/j.gie.2020.06.059
29. Barua I, Vinsard DG, Jodal HC, et al. Artificial intelligence for polyp detection during colonoscopy: A systematic review and meta-analysis. Endoscopy. 2021;53(3):277-284. doi:10.1055/a-1201-7165
30. Bisschops R, East JE, Hassan C, et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2019. Endoscopy. 2019;51(12):1155-1179. doi:10.1055/a-1031-7657
31. Fernández-Esparrach G, Bernal J, López-Cerón M, et al. Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps. Endoscopy. 2016;48(9):837-842. doi:10.1055/s-0042-108434
32. Sánchez-Montes C, Sánchez FJ, Bernal J, et al. Computer-aided prediction of polyp histology on white light colonoscopy using surface pattern analysis. Endoscopy. 2019;51(3):261-265. doi:10.1055/a-0732-5250
33. Houwen BBSL, Hassan C, Coupé VMH, et al. Definition of competence standards for optical diagnosis of diminutive colorectal polyps: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy. 2022;54(1):88-99. doi:10.1055/a-1689-5130
34. Zachariah R, Samarasena J, Luba D, et al. Prediction of Polyp Pathology Using Convolutional Neural Networks Achieves “resect and Discard” Thresholds. American Journal of Gastroenterology. 2020;115(1):138-144. doi:10.14309/ajg.0000000000000429
35. Ichimasa K, Kudo SE, Mori Y, et al. Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy. 2018;50(3):230-240. doi:10.1055/s-0043-122385
36. London AJ. Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. Hastings Center Report. 2019;49(1):15-21. doi:10.1002/hast.973
37. Rivera SC, Liu X, Chan AW, Denniston AK, Calvert MJ. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI Extension. The BMJ. 2020;370:1-14. doi:10.1136/bmj.m3210
38. Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. The Lancet Digital Health. 2020;2(10):e537-e548. doi:10.1016/S2589-7500(20)30218-1
39. Zhang Y, Li F, Yuan F, et al. Diagnosing chronic atrophic gastritis by gastroscopy using artificial intelligence. Digestive and Liver Disease. 2020;52(5). doi:10.1016/j.dld.2019.12.146
40. Namikawa K, Hirasawa T, Nakano K, et al. Artificial intelligence-based diagnostic system classifying gastric cancers and ulcers: Comparison between the original and newly developed systems. Endoscopy. 2020;52(12):1077-1083. doi:10.1055/a-1194-8771
41. Soffer S, Klang E, Shimon O, et al. Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis. Gastrointestinal Endoscopy. 2020;92(4):831-839.e8. doi:10.1016/j.gie.2020.04.039
42. Saito H, Aoki T, Aoyama K, et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointestinal Endoscopy. 2020;92(1):144-151.e1. doi:10.1016/j.gie.2020.01.054
43. Mohan BP, Khan SR, Kassab LL, et al. High pooled performance of convolutional neural networks in computer-aided diagnosis of GI ulcers and/or hemorrhage on wireless capsule endoscopy images: a systematic review and meta-analysis. Gastrointestinal Endoscopy. 2021;93(2):356-364.e4. doi:10.1016/j.gie.2020.07.038
44. Repici A, Badalamenti M, Maselli R, et al. Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology. 2020;159(2). doi:10.1053/j.gastro.2020.04.062
45. Su JR, Li Z, Shao XJ, et al. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos). Gastrointestinal Endoscopy. 2020;91(2):415-424.e4. doi:10.1016/j.gie.2019.08.026
46. Gong D, Wu L, Zhang J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. The Lancet Gastroenterology and Hepatology. 2020;5(4):352-361. doi:10.1016/S2468-1253(19)30413-3
47. Aziz M, Fatima R, Dong C, Lee-Smith W, Nawras A. The impact of deep convolutional neural network-based artificial intelligence on colonoscopy outcomes: A systematic review with meta-analysis. Journal of Gastroenterology and Hepatology (Australia). 2020;35(10):1676-1683. doi:10.1111/jgh.15070
48. Lui TKL, Guo CG, Leung WK. Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: a systematic review and meta-analysis. Gastrointestinal Endoscopy. 2020;92(1):11-22.e6. doi:10.1016/j.gie.2020.02.033
49. Byrne MF, Chapados N, Soudan F, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68(1):94-100. doi:10.1136/gutjnl-2017-314547