Year 2023 / Volume 115 / Number 10
Editorial
Polycystic liver diseases: from molecular basis to development of effective treatments

542-545

DOI: 10.17235/reed.2023.9649/2023

Enara Markaide, Jesús M. Bañales, Pedro M. Rodrigues,

Abstract
Polycystic liver diseases (PLDs) comprise a heterogeneous group of congenital genetic disorders that mainly affect bile duct epithelial cells, known as cholangiocytes. Patients with PLD usually present bile duct dilatation and/or progressive develop intrahepatic, fluid-filled biliary cysts (more than 10), which is the main cause of morbidity.
Share Button
New comment
Comments
No comments for this article
References
1. van Aerts RMM, van de Laarschot LFM, Banales JM, et al. Clinical management of polycystic liver disease. J Hepatol. 2018; 68: 827–837. doi: 10.1016/j.jhep.2017.11.024.
2. Wong MY, McCaughan GW & Strasser SI. An update on the pathophysiology and management of polycystic liver disease. Expert Rev Gastroenterol Hepatol. 2017; 11: 569–581. doi: 10.1080/17474124.2017.1309280.
3. Suwabe T, Chamberlain AM, Killian JM, et al. Epidemiology of autosomal-dominant polycystic liver disease in Olmsted county. JHEP Rep. 2020; 2: 100166. doi: 10.1016/j.jhepr.2020.100166.
4. Ebner K, Feldkoetter M, Ariceta G, et al. Rationale, design and objectives of ARegPKD, a European ARPKD registry study. BMC Nephrol. 2015; 16: 22. doi: 10.1186/s12882-015-0002-z.
5. Perugorria MJ, Masyuk TV, Marin JJ, et al. Polycystic liver diseases: advanced insights into the molecular mechanisms. Nat Rev Gastroenterol Hepatol. 2014; 11: 750–761. 10.1038/nrgastro.2014.155. doi: 10.1038/nrgastro.2014.155.
6. Drenth JPH, Chrispijn M, Nagorney DM, et al. Medical and surgical treatment options for polycystic liver disease. Hepatology 2010; 52: 2223–2230. 10.1002/hep.24036.
7. Besse W, Dong K, Choi J, et al. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J. Clin. Invest. 2017; 127: 1772–1785. doi:10.1172/JCI90129.
8. Olaizola P, Rodrigues PM, Caballero-Camino FJ, et al. Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol. 2022; 19: 585–604. doi: 10.1038/s41575-022-00617-7.
9. Santos-Laso A, Izquierdo-Sanchez L, Rodrigues PM, et al. Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease: New therapeutic targets. Liver Int. 2020; 40: 1670–1685. doi: 10.1111/liv.14485.
10. Lee-Law PY, Olaizola P, Caballero-Camino FJ, et al. Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models. J. Hepatol. 2021; 74: 394–406. doi: 10.1016/j.jhep.2020.09.010.
11. Lee-Law PY, Olaizola P, Caballero-Camino FJ, et al. Inhibition of NAE-dependent protein hyper-NEDDylation in cystic cholangiocytes halts cystogenesis in experimental models of polycystic liver disease. United European Gastroenterol J. 2021; 9: 848–85. doi: 10.1002/ueg2.12126.
12. Masyuk AI, Masyuk TV, Lorenzo-Pisarello MJ, et al. Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology 2018; 67: 1088–1108. doi: 10.1002/hep.29577.
13. Masyuk TV, Huang BQ, Ward CJ, et al. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 2003; 125: 1303–1310. doi: 10.1016/j.gastro.2003.09.001.
14. Stroope A, Radtke B, Huang B, et al. Hepato-renal pathology in pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease. Am J Pathol. 2010; 176: 1282–1291. oi: 10.2353/ajpath.2010.090658.
15. Gradilone SA, Habringer S, Masyuk TV, et al. HDAC6 is overexpressed in cystic cholangiocytes and its inhibition reduces cystogenesis. Am J Pathol. 2014; 184: 600–608. doi: 10.1016/j.ajpath.2013.11.027.
16. Caballero-Camino FJ, Rivilla I, Herraez E, et al. Synthetic Conjugates of Ursodeoxycholic Acid Inhibit Cystogenesis in Experimental Models of Polycystic Liver Disease. Hepatology 2021; 73: 186–203. doi: 10.1002/hep.31216.
17. Munoz-Garrido P, Marin JJ, Perugorria MJ, et al. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. J Hepatol. 2015; 63: 952–961. doi: 10.1016/j.jhep.2015.05.023.
18. D’Agnolo HMA, Kievit W, Takkenberg RB, et al. Ursodeoxycholic acid in advanced polycystic liver disease: A phase 2 multicenter randomized controlled trial J. Hepatol. 2016; 65: 601–607. doi: 10.1016/j.jhep.2016.05.009.
19. Hopp K, Kleczko EK, Gitomer BY, et al. Metabolic reprogramming in a slowly developing orthologous model of polycystic kidney disease Am J Physiol Renal Physiol. 2022; 322: F258–F267. doi: 10.1152/ajprenal.00262.2021.
20. Cassina L, Chiaravalli M, & Boletta, A. Increased mitochondrial fragmentation in polycystic kidney disease acts as a modifier of disease progression. FASEB J. 2020; 34: 6493–6507. doi: 10.1096/fj.201901739RR.
21. Padovano V, Podrini C, Boletta A, et al. Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol. 2018; 14: 678–687. doi: 10.1038/s41581-018-0051-1.
22. Lakhia R, Yheskel M, Flaten A, et al. PPARα agonist fenofibrate enhances fatty acid β-oxidation and attenuates polycystic kidney and liver disease in mice. Am J Physiol Ren Physiol. 2018; 314: F122–F131. doi: 10.1152/ajprenal.00352.2017.
23. Yoshihara D, Kugita M, Sasaki M, et al. Telmisartan ameliorates fibrocystic liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. PLoS ONE 2013; 8: e81480. doi: 10.1371/journal.pone.0081480.
24. Sato y, Qiu J, Hirose T, et al. Metformin slows liver cyst formation and fibrosis in experimental model of polycystic liver disease. Am J Physiol Gastrointest Liver Physiol. 2021; 320: G464–G473. doi: 10.1152/ajpgi.00120.2020.
25. Sato Y, Qiu J, Miura T, et al. Effects of Long-Term Exercise on Liver Cyst in Polycystic Liver Disease Model Rats. Med Sci Sports Exerc. 2020; 52: 1272–1279. doi: 10.1249/MSS.0000000000002251.
Related articles
Citation tools
Markaide E, Bañales J, Rodrigues P. Polycystic liver diseases: from molecular basis to development of effective treatments. 9649/2023


Download to a citation manager

Download the citation for this article by clicking on one of the following citation managers:

Metrics
This article has received 1038 visits.
This article has been downloaded 140 times.

Statistics from Dimensions


Statistics from Plum Analytics

Publication history

Received: 07/04/2023

Accepted: 14/04/2023

Online First: 28/04/2023

Published: 09/10/2023

Article Online First time: 21 days

Article editing time: 185 days


Share
This article hasn't been rated yet.
Reader rating:
Valora este artículo:




Asociación Española de Ecografía Digestiva Sociedad Española de Endoscopia Digestiva Sociedad Española de Patología Digestiva
The Spanish Journal of Gastroenterology is the official organ of the Sociedad Española de Patología Digestiva, the Sociedad Española de Endoscopia Digestiva and the Asociación Española de Ecografía Digestiva
Cookie policy Privacy Policy Legal Notice © Copyright 2023 y Creative Commons. The Spanish Journal of Gastroenterology